

Features

- Micropower consumption
- 2.0V~5.5V power supply
- Chopper stabilized amplifier stage
- CMOS/NMOS output

- Unipolar Hall Switch
- Very High Sensitivity Hall Sensor
- Package: SOT23,SOT23-3, 3Pin SIP,SOT553
- High ESD protection, HBM>4KV

Applications

- Solid State Switch
- PDA
- Pad PC

- Handheld Wireless Handset Awake Switch
- Magnet Proximity Sensor for Switch
 Replacement in Low Duty Cycle Applications

General Description

The TX254 is fabricated from mixed signal CMOS technology. It internally includes an on-chip Hall voltage generator, a voltage regulator for operation with supply voltages of 2.0 to 5.5V, a sleep/awake logic for low power consumption, temperature compensation circuitry, small-signal amplifier, Hall sensor with dynamic offset cancellation system, Schmitt trigger and an open-drain output.

A south pole of sufficient strength will turn the

sensor output on. The output will be turned off under no magnetic field. While the magnetic flux density (B) is larger than operating point (Bop), the output will be turned on (low), the output is held until B is lower than release point (Brp), and then turned off.

The total power consumption in normal operation is typically 15 μ W with a 3.3V power source. Operating temperature range of the TX254 is from -40°C to 85°C.

Block Diagram

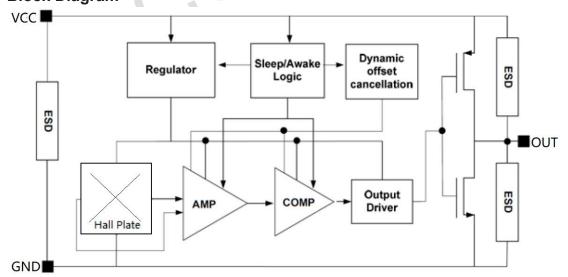


Fig 1

Pin Assignment

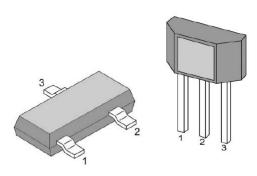


Fig2 SOT23 and SOT23-3

3Pin-SIP

Pin Description1

SOT Pin	SIP Pin	Pin Name	Function
Number	Number		
1	1	VCC	Supply Voltage
2	3	OUT	CMOS Output
3	2	GND	Ground

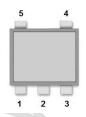


Fig3 SOT553

Pin Description2

Pin Name	Pin No.	I/O	Pin Function
	SOT553		
VCC	5	Р	Input Power Supply
GND	2	Р	Ground
NC	1, 3	-	Not Connected
OUT	4	0	Output Pin

Order Information

Part number	Description	Magnetic
		direction
TX254NR	SOT23 package, tape and reel packaging(3000pcs/bag),Rohs/Pb Free	South pole
TX254MR	SOT23-3 package, tape and reel packaging(3000pcs/bag),Rohs/Pb Free	North pole
TX254CTR	CMOS ,3Pin SIP package, bulk packaging (1000pcs/bag),Rohs/Pb Free	South pole
TX254NTR	NMOS ,3Pin SIP package, bulk packaging (1000pcs/bag),Rohs/Pb Free	South pole
TX254ER	SOT553 package, tape and reel packaging(3000pcs/bag),Rohs/Pb Free	South pole

17/254

Unipolar, MicroPower Hall-Effect Switch

Absolute Maximum Ratings

Symbol	Parameter		Value	Unit
Vcc	Sup	oly Voltage	-0.5~6.0	V
ldd	Sup	ply Current	5	mA
В	Magnet	c Flux Density	Unlimited	Gauss
Tj		nction Temperature Range	-40 to 150	°C
Ts	Storage	Temperature	-65 to 150	$^{\circ}$ C
		3Pin SIP	550	mW
PD	Power	SOT23	200	mW
PD	Dissipation	SOT23-3	230	mŴ
		SOT553	230	mW

Note: Stresses greater than those listed under "Absolut Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. "Absolute Maximum Ratings" for extended period may affect device reliability.

Recommended Operating Conditions

(TA=25℃ unless otherwise noted)

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	2.0	5.5	V
Ambient Temperature	Та	-40	85	$^{\circ}$ C

Electrical Characteristics

(VCC=3.3V Ta=25°C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Icc	Average Supply Current	V _{CC} =3.3V,Output Open	-	5	10	uA
I _{ON}	Supply current (opertating mode)	V _{CC} =3.3V	-	1.2	-	mA
I _{ST}	Supply current (stand-by mode)	V _{CC} =3.3V	-	2.5	-	uA
Vsat	Output Saturation Voltage	Io=2mA,B>Bop	-	0.05	-	V
loL	Output Leakage Current	V _{OUT} =5V,B <brp< td=""><td>-</td><td><0.1</td><td>1</td><td>uA</td></brp<>	-	<0.1	1	uA
Tawake	Awake Time	V _{CC} =3.3V	-	90	-	us
T _{period}	Period	V _{CC} =3.3V	-	120	-	ms
ESD	Electro-Static Discharge	НВМ		4		KV

Magnetic Characteristics

(VCC=3.3V Ta=25 $^{\circ}$ C, unless otherwise specified)

Characteristics	Symbol	Min	Тур	Max	Unit
Operating Point	Вор	+20	+35	+50	Gs
Releasing Point	Brp	+10	+25	+40	Gs
Hysteresis	Bhys	-	10	-	GS

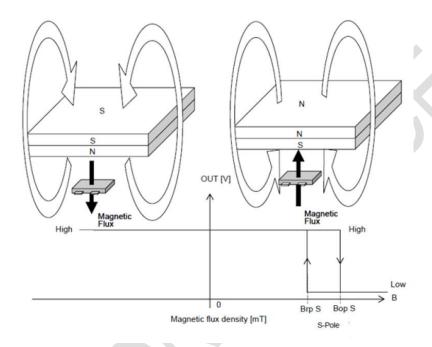


Fig4 Magnetic Operation Characteristic of TX254NR/ER/TR

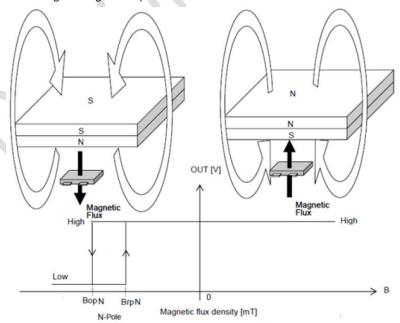
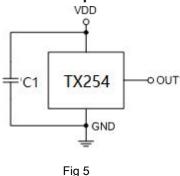



Fig5 Magnetic Operation Characteristic of TX254MR

Application Circuits CMOS Output

N-ch Open drain Output

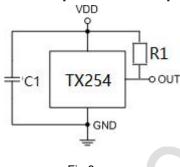


Fig 6

TX254's pole-independent sensing technique allows for operation with south pole magnet orientation, enhancing the manufacturability of the device.

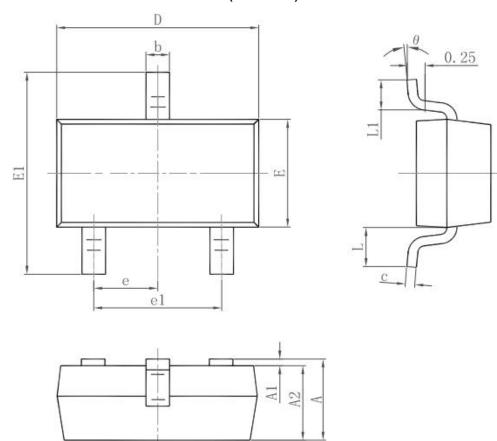
C1 serves two purposes: minimizing ripples on the input voltage and enhancing immunity from RF transmission noises within close proximity. Recommended values are between *10nF* and *100nF*. The larger the capacitance, the better the noise immunity is for the TX254.

R1=100K.

It is strongly recommended that an external bypass capacitor be connected (in close proximity to the Hall sensor) between the supply and ground of the device to reduce both external noise and noise generated by the chopper-stabilization technique. This is especially true due to the relatively high impedance of battery supplies. The simplest form of magnet that will operate these devices is a bar magnet with south pole near the branded surface of the device.

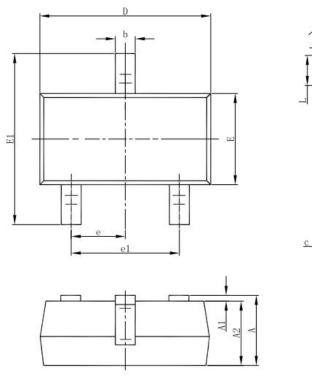
Thermal Considerations

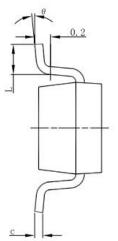
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. This restriction limits the power dissipation of the TX254. Calculate the maximum allowable dissipation, PD(max), and keep the actual dissipation less than or equal to PD(max). The maximum-power-dissipation limit is determined using following equation:

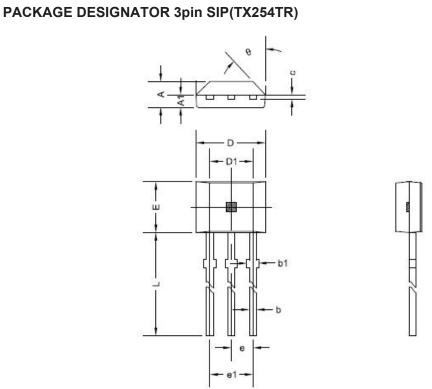

$$P_{D(MAX)} = \frac{125^{\circ}C - T_A}{R_{elA}}$$

Where, T_A is the maximum ambient temperature for the application. $R_{\theta JA}$ is the thermal resistance junction-to-ambient given in Power Dissipation Table.

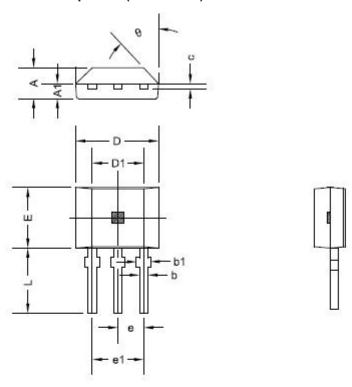
Ver 1.8 5 Aug, 2020



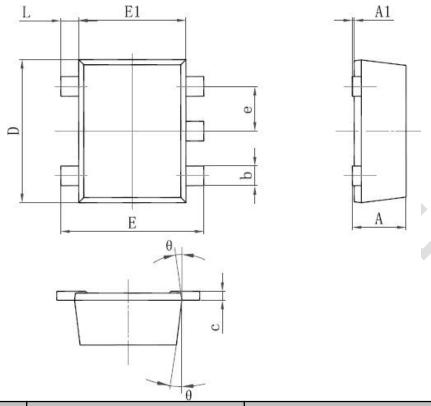

Package Information PACKAGE DESIGNATOR SOT23 (TX254NR)


Cumbal	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
е	0.950 TYP.		0.037	TYP.
e1	1.800	2.000	0.071	0.079
L	0.550	REF.	0.022 REF.	
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°

PACKAGE DESIGNATOR SOT23-3(TX254MR)


Ob I	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)	0.037(E	SC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

Cumbal	Dimensions in Millimeters		Dimensions in Inche	
Symbol	Min	Max	Min	Max
Α	1.420	1.620	0.056	0.064
A1	0.660	0.860	0.026	0.034
b	0.350	0.480	0.014	0.019
b1	0.400	0.550	0.016	0.022
С	0.360	0.510	0.014	0.020
D	3.900	4.200	0.154	0.165
D1	2.970	3.270	0.117	0.129
E	2.870	3.124	0.113	0.123
е	1.270	1.270 TYP.		TYP.
e1	2.440	2.640	0.096	0.104
L	13.600	15.500	0.535	0.610
θ	45°	TYP.	45°	TYP.


PACKAGE DESIGNATOR 3pin SIP(TX254CTR)

Cumahal	Dimensions i	in Millimeters	Dimension	s in Inches
Symbol	Min	Max	Min	Max
Α	1.420	1.620	0.056	0.064
A1	0.660	0.860	0.026	0.034
b	0.350	0.480	0.014	0.019
b1	0.400	0.550	0.016	0.022
С	0.360	0.510	0.014	0.020
D	3.900	4.200	0.154	0.165
D1	2.970	3.270	0.117	0.129
E	2.870	3.124	0.113	0.123
е	1.270	TYP.	0.050	TYP.
e1	2.440	2.640	0.096	0.104
L	2.900	3.100	0.114	0.122
θ	45°			TYP.

TX254Unipolar, MicroPower Hall-Effect Switch

PACKAGE DESIGNATOR SOT553(TX254ER)

Cumbal	Dimensions In Millimeters		Dimensions I	n Inches
Symbol	Min.	Max.	Min.	Max.
А	0.525	0.600	0.021	0.024
A1	0.000	0.050	0.000	0.002
е	0.450	0.550	0.018	0.022
С	0.090	0.160	0.004	0.006
D	1.500	1.700	0.059	0.067
b	0.170	0.270	0.007	0.011
E1	1.100	1.300	0.043	0.051
E	1.500	1.700	0.059	0.067
θ	7° REF		7°	REF
L	0.100	0.300	0.004	0.012

TX254Unipolar, MicroPower Hall-Effect Switch

© Shanghai TX Electronics Sci-Tech Co., Ltd

TX cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TX product. No circuit patent license, copyrights or other intellectual property rights are implied. TX reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complet.