

Features

- On-Chip Hall Sensor
- 3.5V to 20V Supply Voltage
- 300mA (avg) Output Sink Current
- Reversed Supply Voltage Protection
- -20℃ to 85℃ Operating Temperature
- Low Profile TO-94 (SIP-4L) Package
- High ESD Performance

Applications

- Dual-Coil Brush-less DC Motor
- Dual-Coil Brush-less DC Fan
- Revolution counting
- Speed measurement

General Description

The TX3277 is an integrated Hall sensor with output driver designed for electronic commutation of brush-less DC motor applications. The device includes an on-chip Hall voltage, a Schmitt trigger to provide switching hysteresis for noise rejection, a temperature compensation circuit to compensate the temperature drift of Hall sensitivity and two complementary open-collector drivers for sinking large load current. It also includes an internal band-gap regulator which is used to provide bias voltage for internal circuits. Placing the device in a variable magnetic field, if the magnetic flux density is larger than threshold BOP,the pin DO will be turned low (on) and pin DOB will be turned high (off). This output state is held until the magnetic flux density reverses and falls below BRP, then causes DO to be turned high (off) and DOB turned low(on).

TX3277 is available in TO-94(SIP-4L) package.

Pin Assignment

Fig 1

Pin Description

Pin Number	Pin Name	Function		
1	Vcc	Supply voltage		
2	DO	Output 1		
3	DOB	Output 2		
4	GND	Ground		

Block Diagram

Absolute Maximum Ratings

Table1 (Ta=25℃)

Symbol	Parameter		Value	Unit
Vcc	Sup	ply Voltage	20	V
V _{RCC}	Reverse P	Protection Voltage	-20	V
В	Magnetic Flux Density		Unlimited	Gauss
	Output	Continuous	300	mA
IO	Current	Hold	500	mA
		Peak(start up)	750	mA
PD	Power Dissipation		550	mW
θJΑ	Thermal	Die to atmosphere	227	°C/W
θ JC	Resistance	Die to package case	49	°C/W
TSTG	Storage Temperature		-50 to 150	°C

Note:Stresses greater than those listed under "Absolut Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. "Absolute Maximum Ratings" for extended period may affect device reliability.

Recommended Operating Conditions

Table 2 (Ta=25℃)

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	3.5	20	V
Ambient Temperature	Та	-20	85	°C

Electrical Characteristics

Table 3 (Vcc=12V,Ta=25°C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vara	Output Saturation Voltage	Vcc=12V,Io=100mA	-	0.1		V
VSAT	Oulput Saturation Voltage	lo=300mA		0.3	0.5	V
Iol	Output Leakage Current	V _{CE} =16V	-	0.1	10	uA
Icc	Supply Current	V _C C=12V,Output Open		12	16	mA
\/7	Output Zener Breakdown			FE		V
٧Z	Voltage			55		V
tr	Output Rise Time	R∟=820 Ω CL=20pF	-	3.0	10	us
tf	Output Fall Time	RL=820 Ω CL=20pF	-	0.3	1.5	us
δt	Switch Time Differential	RL=820 Ω CL=20pF	-	3.0	10	us

Magnetic Characteristics

Table 4 (Ta=25℃)

Characteristics	Symbol	Grade	Min	Тур	Max	Unit
Operating Point	Вор	А	20	35	50	Gauss
		В	10	-	70	Gauss
		С	-	-	90	Gauss
		D	-	-	125	Gauss
Releasing Point	Brp	А	-50	-35	-20	Gauss
		В	-70	-	-10	Gauss
		С	-90	-	-	Gauss
		D	-125	-	-	Gauss
Hysteresis	Bhys	-	-	70	-	Gauss

Test Circuit

Fig 4 VDO vs. Magnetic Flux Density

Fig 5 VDOB vs. Magnetic Flux Density

Application Circuits

TX3277 Complementary Output Hall Effect Latch

Mechanical Dimensions

Package Information

TO-94 PACKAGE OUTLINE DIMENSIONS

Fig 7

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
A	1.400	1.800	0.055	0.071	
A1	0.700	0.900	0.028	0.035	
A2	0.500	0.700	0.020	0.028	
b	0.360	0.500	0.014	0.020	
b1	0.380	0.550	0.015	0.022	
С	0.360	0.510	0.014	0.020	
D	4.980	5.280	0.196	0.208	
D1	3.780	4.080	0.149	0.161	
E	3.450	3.750	0.136	0.148	
е	1.270 TYP.		0.050 TYP.		
e1	3.710	3.910	0.146	0.154	
L	14.900	15.300	0.587	0.602	
θ	45° TYP.		45°	TYP.	

© Shanghai TX Electronics Sci-Tech Co., Ltd

TX cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TX product. No circuit patent license, copyrights or other intellectual property rights are implied. TX reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complet.