

TX70XXM series Low Power Voltage Detector

Features

- Low power consumption
- Low temperature coefficient
- Built-in hysteresis characteristic
- High input voltage (up to 10V)
- Output voltage accuracy: tolerance $\pm 1\%$ or $\pm 2\%$
- TO92, SOT89 and SOT23-3 package

Applications

- Battery checkers
- Level selectors
- Power failure detectors
- Microcomputer reset
- Battery memory backup
- Non-volatile RAM signal storage protectors

General Description

The TX70XXM series devices are a set of three terminal low power voltage detectors implemented in CMOS technology. Each voltage detector in the series detects a particular fixed voltage ranging from 0.9V to 5.0V. The voltage detectors consist of a high-precision and low power consumption standard voltage source as well as a comparator,

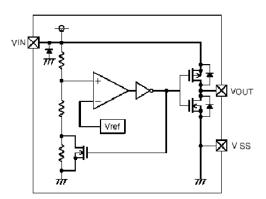
hysteresis circuit, and an output driver (CMOS inverter or NMOS open drain). CMOS technology ensures low power consumption.

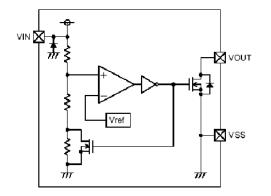
Although designed primarily as fixed voltage detectors, these devices can be used with external components to detect user specified threshold voltages.

Part No.	Det. Voltage	Hys. Width	Output	Tolerance	Package
TX7009MCxx	0.9V	4%	CMOS	±1% or ±2%	
TX7009MNxx	0.9V	4%	NMOS	$\pm 1\%$ or $\pm 2\%$	
TX7010MCxx	1.0V	4%	CMOS	±1% or ±2%	
TX7010MNxx	1.0V	4%	NMOS	±1% or ±2%	
TX7011MCxx	1.1V	4%	CMOS	±1% or ±2%	TO92
TX7011MNxx	1.1V	4%	NMOS	±1% or ±2%	SOT89
TX7012MCxx	1.2V	4%	CMOS	±1% or ±2%	SOT23-3
TX7012MNxx	1.2V	4%	NMOS	±1% or ±2%	
		4%		±1% or ±2%	
TX7050MCxx	5.0V	4%	CMOS	±1% or ±2%	
TX7050MNxx	5.0V	4%	NMOS	±1% or ±2%	

Selection Table

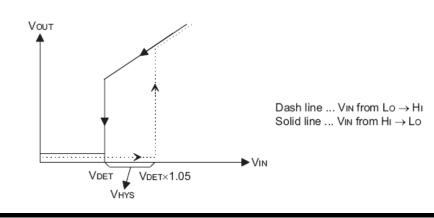
TX70XXM series Low Power Voltage Detector


Order Information

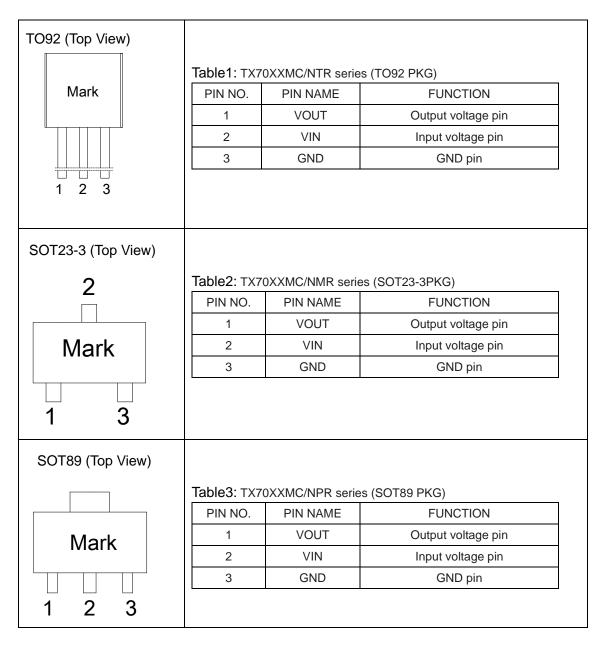

TX7012	TX70123456					
	Designator	Symbol	Description			
	1 2	Integer	Output Voltage(0.9~5.0V)			
	3	М	Standard			
	4	С	CMOS output			
		Ν	NMOS output			
	5	Т	Package: TO-92			
		Р	Package: SOT89			
		М	Package: SOT23-3			
	6	R	RoHS / Pb Free			
		G	Halogen Free			

Block Diagram

(1) CMOS Output


(2) N-ch Open Drain Output

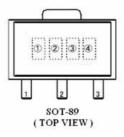
Output Table & Curve


V _{DD}	Vdd>Vdet(+)	Vdd≪Vdet(-)
Vout	Hi-Z	Vss

TX70XXM series Low Power Voltage Detector

Pin Assignment

TX70XXM series Low Power Voltage Detector


Marking Rule

①②③④ ①②③④ ①①①①① TO-92 (TOP VIEW) 3 ①②③④

SOT23-3 (TOP VIEW)

1

2

① Represents integer of detect voltage and CMOS Output

MARK	CONFIGURATION	VOLTAGE (V)
А	CMOS	0.X
В	CMOS	1.X
С	CMOS	2.X
D	CMOS	3.X
E	CMOS	4.X
F	CMOS	5.X
H	CMOS	6.X

N-Channel Open Drain Output

MARK	CONFIGURATION	VOLTAGE (V)
К	N-ch	0.X
	N-ch	1.X
М	N-ch	2.X
N	N-ch	3.X
P	N-ch	4.X
R	N-ch	5.X
S	N-ch	6.X

②Represents decimal number of detect voltage

MARK	VOLTAGE (V)	MARK	VOLTAGE (V)
0	X.0	5	X.5
1	X.1	6	X.6
2	X.2	7	X.7
3	X.3	8	X.8
4	X.4	9	X.9

③ Represents accuracy

MARK	ACCURACY
3	2%
1	1%

④Represents production lot number

Based on the internal standard. (G, I, J, O, Q, W excepted)

Absolute Maximum Ratings

Supply Voltage-0.3V to 10V Operating Temperature-40°C to 85°C Storage Temperature50℃ to 125℃

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

Symbol	Parameter	Package	Max.	Unit
		SOT23-3	500	°C/W
θ_{JA}	Thermal Resistance (Junction to Ambient) (Assume no ambient airflow, no heat sink)	SOT89	200	°C/W
	annow, no near sink)	TO92	200	°C/W
		SOT23-3	0.20	W
PD	Power Dissipation	SOT89	0.50	W
		TO92	0.50	W

Note: P_D is measured at Ta= 25 $^\circ\!\mathrm{C}$

Electrical Characteristics

V_{DF}=0.8V~5.0V

Ta=25℃

		-		1					
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit		
Vdet	Detection Voltage	-	DF=0.8V~2.2V DF=2.3V~5.0V	V _{DF} *0.98	Vdf	V _{DF} *1.02	V		
V _{HYS}	Hysteresis Width		-	0.02*V _{DET}	0.04*V _{DET}	0.08*V _{DET}	V		
					Vin=1.5V	-	0.7	2.3	
		Vin=2.0V		-	0.8	2.7			
IDD	Operating Current		Vin=3.0V	-	0.9	3.0	μA		
			Vin=4.0V	-	1.0	3.2			
			Vin=5.0V	-	1.1	3.6			
Vdd	Operating Voltage	-	-	0.7	-	10	V		
lol	Output Sink Current	2V	Vout=0.2V	0.5	1	-	mA		
$\frac{\Delta V_{_{DET}}}{V_{_{DF}}\Delta T_a}$	Temperature Coefficient	-	-25℃ <ta<125℃< td=""><td>-</td><td>±100</td><td>-</td><td>ppm/°C</td></ta<125℃<>	-	±100	-	ppm/°C		

TX70XXM series Low Power Voltage Detector

3.0

2.5

2.0

1.5

1.0

0.5

0.0

2.3

Output voltage (V)

Detect Voltage=2.7V(25°C)

2.7

Input voltage (V)

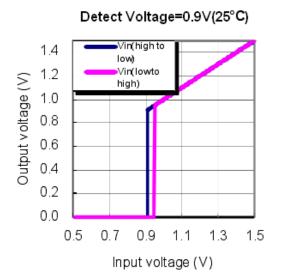
2.9

3.1

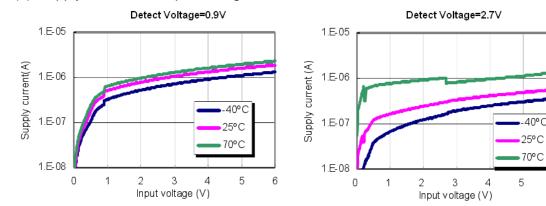
6

Vin (hig h

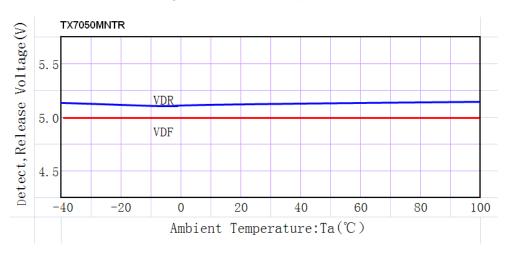
Vin(lowto


to low)

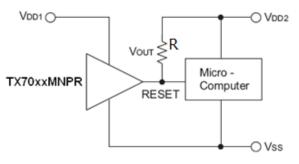
high)


2.5

Typical Performance Characteristics

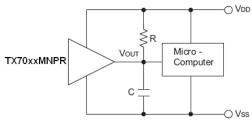

(1) Output Voltage vs Input voltage

(3) Detect, Release Voltage vs. Ambient Temperature

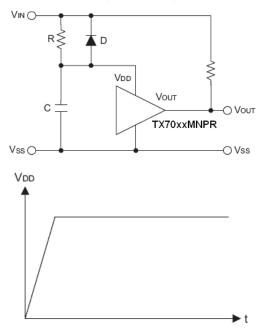


TX70XXM series Low Power Voltage Detector

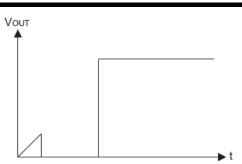
Application Circuits


Microcomputer Reset Circuit

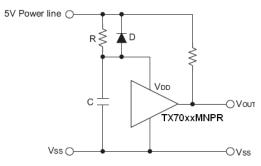
Normally a reset circuit is required to protect the microcomputer system from malfunctions due to power line interruptions. The following examples show how different output configurations perform a reset function in various systems. NMOS open drain output application for separate power supply

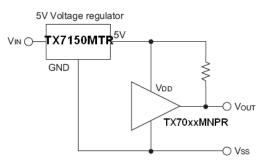


NMOS open drain output application with R-C delay


Power-on Reset Circuit

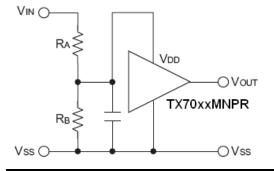
With several external components, the NMOS open drain type of the TX70XXM series can be used to perform a power-on reset function as shown:


TX70XXM series Low Power Voltage Detector


5V Power Line Monitoring Circuit

Generally, a minimum operating voltage of 4.5V is guaranteed in a 5V power line system.

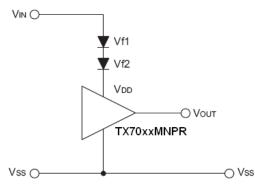
5V power line monitor with power-on reset


With 5V voltage regulator

Change of Detectable Voltage

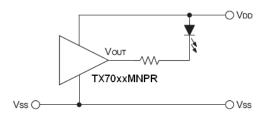
If the required voltage is not found in the standard product selection table, it is possible to change it by using external resistance dividers or diodes.

Varying the detectable voltage with a resistance divider

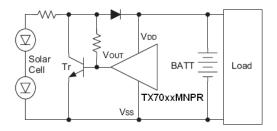


TX70XXM series Low Power Voltage Detector

 $\begin{array}{l} \mbox{Detectable voltage} = \frac{R_{A} + R_{B}}{R_{B}} \times V_{DET} \\ \mbox{Hysteresis width} = \frac{R_{A} + R_{B}}{R_{B}} \times V_{HYS} \end{array}$

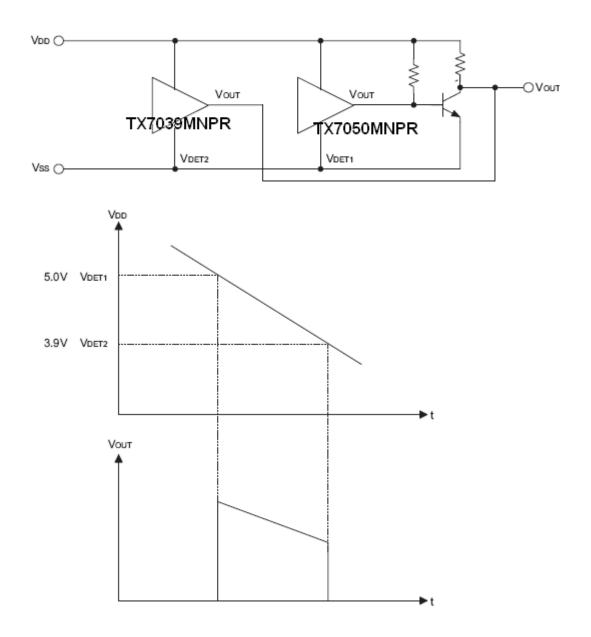

Varying the detectable voltage with a diode

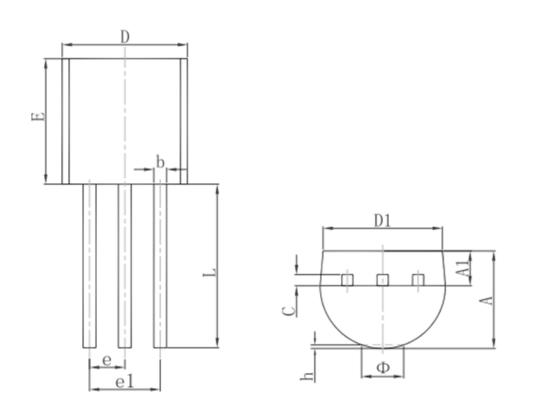
Detectable Voltage = $V_{f1}+V_{f2}+V_{DET}$


Malfunction Analysis

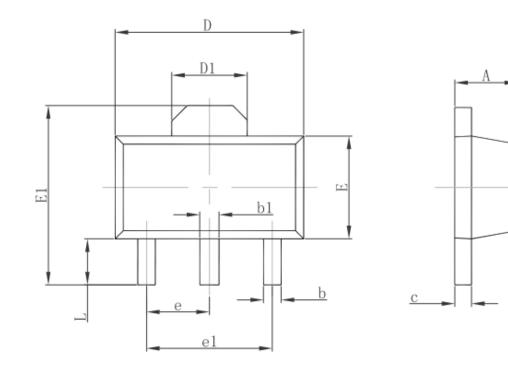
The following circuit demonstrates the way a circuit analyzes malfunctions by monitoring the variation or spike noise of power supply voltage.

Charge Monitoring Circuit

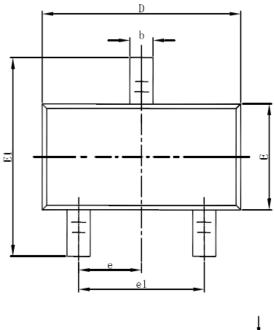

The following circuit shows a charged monitor for protection against battery deterioration by overcharging. When the voltage of the battery is higher than the set detectable voltage, the transistor turns onto bypass the charge current, protecting the battery from overcharging.

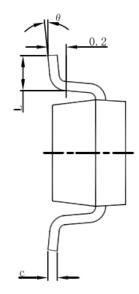

Level Selector

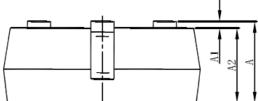
The following diagram illustrates a logic level selector.


Package Information 3-pin TO92 Outline Dimensions

Symbol	Dimensions	In Millimeters	Dimension	s In Inches	
Symbol	Min.	Max.	Min.	Max.	
Α	3.300	3.700	0.130	0.146	
A1	1.100	1.400	0.043	0.055	
b	0.380	0.550	0.015	0.022	
С	0.360	0.510	0.014	0.020	
D	4.300	4.700	0.169	0.185	
D1	3.430		0.135		
E	4.300	4.700	0.169	0.185	
е	1.270	TYP.	0.050	TYP.	
e1	2.440	2.640	0.096	0.104	
L	14.100	14.500	0.555	0.571	
Φ		1.600		0.063	
h	0.000	0.380	0.000	0.015	


3-pin SOT89 Outline Dimensions




Symbol	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
A	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550	REF.	0.061 REF.	
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP.		0.060 TYP.	
e1	3.000 TYP.		0.118	BTYP.
L	0.900	1.200	0.035	0.047

3-pin SOT23-3 Outline Dimensions

Symbol	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

TX70XXM series Low Power Voltage Detector

© Shanghai TX Semiconductor Sci.-Tech. Co., Ltd.

TX cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TX product. No circuit patent license, copyrights or other intellectual property rights are implied. TX reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.