

16V,2A synchronous Step-Down Converter

Features

- Wide 3.5V to 16V Operating input Range
- 2A Continuous Output Current
- No Schottky Diode Required
- 500KHz Frequency Operation
- Built-in Over Current Limit
- Built-in Over Voltage Protection
- PFM Mode for High Efficiency in Light Load
- Internal Soft start

Applications

- Digital Set-top Box (STB)
- Tablet Personal Computer (Pad)
- Flat-Panel Television and Monitor
- Wi-Fi Router / AP

General Description

The TX941XA/F-20M6R is a high frequency, synchronous, rectified, step-down, switch-mode converter with internal power MOSFETs. It offers a very compact solution to achieve a 2A continuous output current over a wide input supply range, with

- 110mΩ/70mΩ Low RDS(ON) Internal Power MOSFETs
- Output Adjustable from 0.6V
- Integrated internal compensation
- No Schottky Diode Required
- Thermal Shutdown
- Available in SOT23-6 ,Package
- -40°C to +85°C Temperature Range
- Digital Video Recorder (DVR)
- Portable Media Player (PMP)
- Cable Modem / XDSL
- General Purposes

excellent load and line regulation. The TX941XA/F-20M6R requires a minimal number of readily available, external components and is available in a space saving SOT23-6 package.

Typical Application

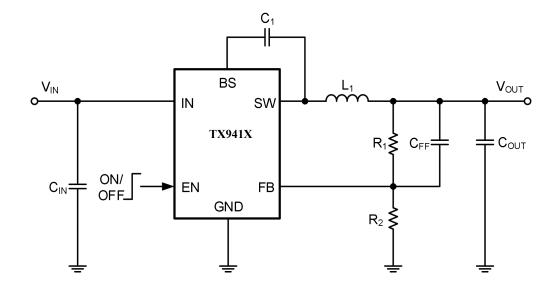
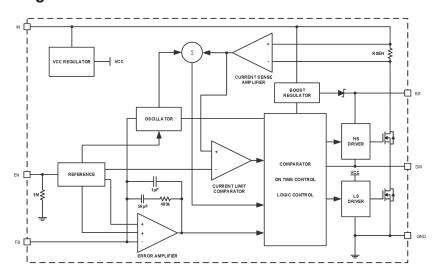



Figure 1. Basic Application Circuit

16V,2A synchronous Step-Down Converter

System Block Diagram

Functional Description

Internal Regulator

The TX941XA/F-20M6R is a current mode step down DC/DC converter that provides excellent transient response with no extra external compensation components. This device contains an internal, low **Error Amplifier**

The error amplifier compares the FB pin voltage with the internal FB reference (VFB) and outputs a current proportional to the difference between the two. This output current is then used to charge or discharge the internal compensation network to form the COMP voltage, **Under-Voltage Lockout (UVLO)**

Under-voltage lockout (UVLO) protects the chip from operating at an insufficient supply voltage. UVLO protection monitors the internal regulator voltage. When

Thermal Shutdown

Thermal shutdown prevents the chip from operating at exceedingly high temperatures. When the silicon die temperature exceeds 160°C, it shuts down the whole chip. Internal Soft-Start

The soft-start is implemented to prevent the converter output voltage from overshooting during startup. When the chip starts, the internal circuitry generates a soft-start voltage (SS) ramping up from 0V to 0.6V. When it is lower

resistance, high voltage power MOSFET, and operates at a high 500K operating frequency to ensure a compact, high efficiency design with excellent AC and DC performance.

which is used to control the power MOSFET current. The optimized internal compensation network minimizes the external component counts and simplifies the control loop design.

the voltage is lower than UVLO threshold voltage, the device is shut off. When the voltage is higher than UVLO threshold voltage, the device is enabled again.

When the temperature falls below its lower threshold (Typ. 130°C) the chip is enabled again.

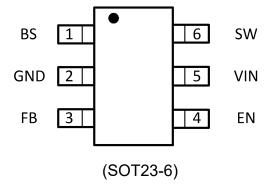
than the internal reference (REF), SS overrides REF so the error amplifier uses SS as the reference. When SS is higher than REF, REF regains control. The SS time is internally max to 4.0ms.

16V,2A synchronous Step-Down Converter

Over Current Protection & Hiccup

The TX941XA/F-20M6R has cycle-by-cycle over current limit when the inductor current peak value exceeds the set current limit threshold. Meanwhile, output voltage starts to drop until FB is below the Under-Voltage (UV) threshold, typically 25% below the reference. Once a UV is triggered, the TX941XA/F-20M6R enters hiccup mode **Startup and Shutdown**

If both VIN and EN are higher than their appropriate thresholds, the chip starts. The reference block starts first, generating stable reference voltage and currents, and then the internal regulator is enabled. The regulator provides stable supply for the remaining circuitries. Three events can shut down the chip: EN low, VIN low and


to periodically restart the part. This protection mode is especially useful when the output is dead-short to ground. The average short circuit current is greatly reduced to alleviate the thermal issue and to protect the regulator. The TX941XA/F-20M6R exits the hiccup mode once the over current condition is removed.

thermal shutdown. In the shutdown procedure, the signaling path is first blocked to avoid any fault triggering. The COMP voltage and the internal supply rail are then pulled down. The floating driver is not subject to this shutdown command.

Pin Description

2000.	- P	
PIN	NAME	FUNCTION
1	BS	Bootstrap. A capacitor connected between SW and BST pins is required to form a floating supply across the high-side switch driver.
2	GND	GROUND Pin
3	FB	Adjustable Version Feedback input. Connect FB to the center point of the external resistor divider
4	EN	Drive this pin to a logic-high to enable the IC. Drive to a logic-low to disable the IC and enter micro-power shutdown mode.
5	VIN	Power Supply Pin
6	SW	Switching Pin

Pin Configuration

16V,2A synchronous Step-Down Converter

Order Information

TX94123-45678

Designator	Symbol	Description			
1	1	10V~19V			
	6	0.6V Feedback Voltage			
2	7	0.765V Feedback Voltage			
	8	0.8V Feedback Voltage			
3	А	500K Switching Frequency			
	F	1M Switching Frequency			
45	20	Output Current			
67	M6	Package: SOT23-6			
	R	RoHS / Pb Free			
(8)	G	Halogen Free			

Marking	Model	Description	Packag	T/R Qty.
BAXXX	TX9416A-20M6R	TX9416A-20M6R Buck, 3.5-18V, 2.0A, 500KHz, VFB 0.6V, SOT23-6	SOT23-6	3000PCS
BDXXX	TX9417A-20M6R	TX9417A-20M6R Buck, 3.5-18V, 2.0A, 500KHz, VFB 0.765V, SOT23-6	SOT23-6	3000PCS
BEXXX	TX9418A-20M6R	TX9418A-20M6R Buck, 3.5-18V, 2.0A, 500KHz, VFB 0.8V, SOT23-6	SOT23-6	3000PCS
BCXXX	TX9416F-20M6R	TX9416F-20M6R Buck, 3.5-18V, 2.0A, 1MHz, VFB 0.6V, SOT23-6	SOT23-6	3000PCS
BGXXX	TX9417F-20M6R	TX9417F-20M6R Buck, 3.5-18V, 2.0A, 1MHz, VFB 0.765V, SOT23-6	SOT23-6	3000PCS
BFXXX	TX9418F-20M6R	TX9418F-20M6R Buck, 3.5-18V, 2.0A, 1MHz, VFB 0.8V, SOT23-6	SOT23-6	3000PCS

16V,2A synchronous Step-Down Converter

Absolute Maximum Ratings (1) (2)

Vin,EN,Voltage0.3V to 18V	BS Voltage(Vsw-0.3) to (Vsw+5V)
Operating Temperature Range40°Cto +85°C	ESD(Machine Made)MM±250V
FB Voltages0.3 to 6V	ESD(Human Body Made)HMB±4KV
Lead Temperature(Soldering,10s)+260°C	Latch-up±200mA
SW Voltage0.3V to (VIN+0.5V)	Thermal Resistance (θJA)105 °C/W
Storage Temperature Range55°Cto 150°C	Thermal Resistance(θJC)55 °C/W

Note 1: Exceeding these ratings may damage the device.

Note 2: The device is not guaranteed to function outside of its operating conditions.

Electrical Characteristics (1) (2)

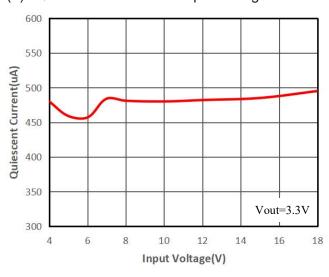
V_{IN}=12V, T_A=25°C, unless otherwise specified.

Parameter	Test Conditions	Min	Тур.	Max	Unit
Input Voltage Range		3.5(3)		16	V
Supply Current (Quiescent)	V _{EN} =3.0V		0.6	0.8	mA
Supply Current (Shutdown)	V _{IN} =5V, EN = GND			10	uA
Feedback Voltage		0.585	0.600	0.615	V
High-Side Switch On-Resistance	Isw=100mA		110	120	mΩ
Low-Side Switch On-Resistance	I _{SW} =-100mA		70	80	mΩ
Upper Switch Current Limit		2.5	3	3.5	А
Over Voltage Protection Threshold			18.6	19.5	V
Switching Frequency		400	500	600	KHz
Maximum Duty Cycle	V _{FB} =90%		97		%
Minimum On-Time		65	72	110	nS
EN Rising Threshold		3.3			V
EN Falling Threshold				1.0	V
	Wake up VIN Voltage		3.5	3.8	V
Under-Voltage Lockout Threshold	Shutdown VIN Voltage	2.9	3.2		V
	Hysteresis VIN voltage		300		mV
Soft Start			4.0		mS
Thermal Shutdown		150	160		°C
Thermal Hysteresis			30		°C

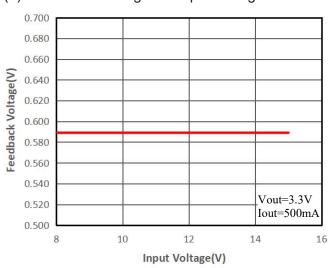
Note (1): MOSFET on-resistance specifications are guaranteed by correlation to wafer level measurements.

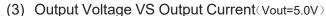
Note (2): Thermal shutdown specifications are guaranteed by correlation to the design and characteristics analysis.

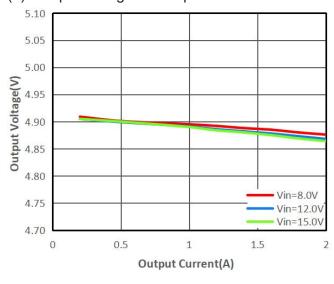
Note (3): When the power supply voltage is between 3.5V and 4.5V, the output current of the chip will be limited. Under the condition of meeting the low dropout requirement, the maximum output current of the chip is approximately 1.5A.

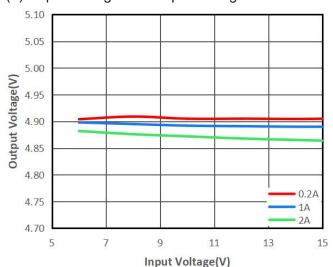

16V,2A synchronous Step-Down Converter

Typical Performance Characteristics⁽¹⁾ (2)

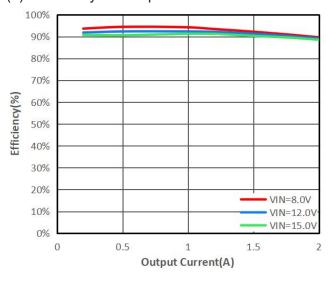

Note (1): Performance waveforms are tested on the evaluation board.

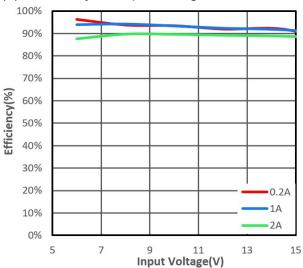

Note (2): VIN =12V, VOUT=3.3V, TA = +25°C, unless otherwise noted.


(1) Quiescent Current VS Input Voltage

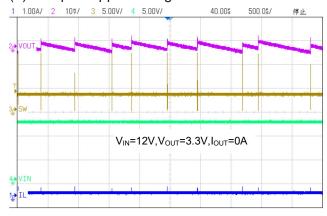

(2) Feedback Voltage VS Input Voltage

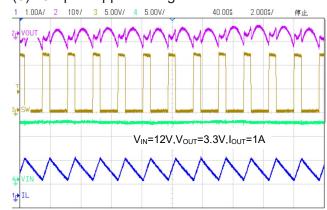
(4) Input Voltage VS Output Voltage (Vout=5.0V)

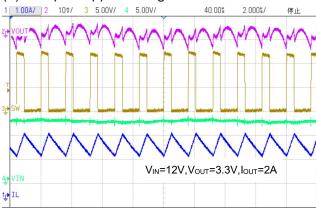



TX941XA/F-20M6R

16V,2A synchronous Step-Down Converter

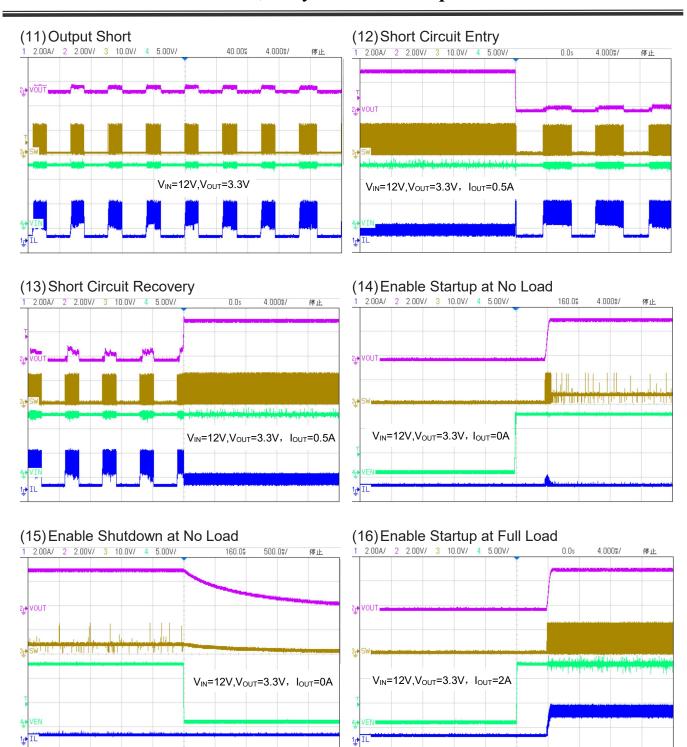

(5) Efficiency VS Output Current (Vout=5.0V)


(6) Efficiency VS Input Voltage (Vout=5.0V)


(7) Output Ripple Voltage

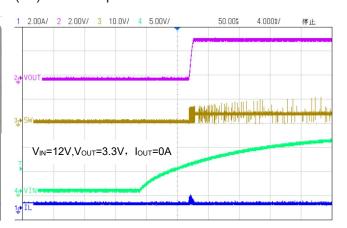

(8) Output Ripple Voltage

(9) Output Ripple Voltage

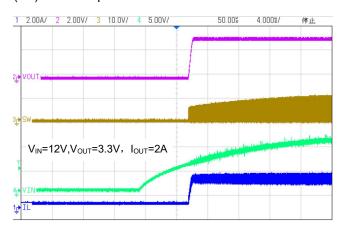

(10)Loop Response

TX941XA/F-20M6R

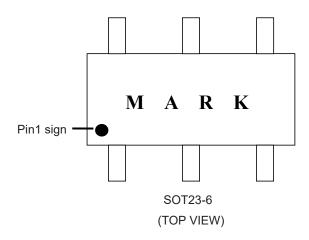
16V,2A synchronous Step-Down Converter


TX941XA/F-20M6R

16V,2A synchronous Step-Down Converter


(17) Enable Shutdown at Full Load

1 2.00A/ 2 2.00V/ 3 10.0V/ 4 5.00V/ 0.0s 400.0b/ 存止 2 VOUT VIN=12V,VOUT=3.3V, IouT=2A T VEN


(18) Power Up at No Load

(19) Power Up at Full Load

Marking Information

Top marking: BAXXX (device code: BA, lot number code: XXX).

Remark If there are other requirements, please contact our sales office.

TX941XA/F-20M6R

16V,2A synchronous Step-Down Converter

Applications Information

Setting the Output Voltage

TX941XA/F-20M6R require an input capacitor, an output capacitor and an inductor. These components are critical to the performance of the device. TX941XA/F-20M6R are internally compensated and do not require external

components to achieve stable operation. The output voltage can be programmed by resistor divider.

$$V_{OUT} = V_{FB} \times \frac{R1 + R2}{R2}$$

Table 1: Recommended Parameters for typical Vout applications.

V _{OUT} (V)	R1(KΩ)	R2(KΩ)	L1(µH)	C1(nF)	C _{IN} (µF)	C _{OUT} (µF)	C _{FF} (pF) Opt.
1.0	6.67	10	2.2	100	22	22×2	C _{FF} Chapter
1.05	7.5	10	2.2	100	22	22×2	C _{FF} Chapter
1.2	10	10	2.2	100	22	22×2	C _{FF} Chapter
1.5	15	10	2.2	100	22	22×2	C _{FF} Chapter
1.8	20	10	3.3	100	22	22×2	C _{FF} Chapter
2.5	31.67	10	3.3	100	22	22×2	C _{FF} Chapter
3.3	45	10	4.7	100	22	22×2	C _{FF} Chapter
5.0	73.3	10	4.7	100	22	22×2	C _{FF} Chapter

All the external components are the suggested values, the final values are based on the application testing results.

Selecting the Inductor

The recommended inductor values are shown in the Application Diagram. It is important to guarantee the inductor core does not saturate during any foreseeable operational situation. The inductor should be rated to handle the maximum inductor peak current: Care should be taken when reviewing the different saturation current ratings that are specified by different manufacturers. Saturation current ratings are typically specified at 25°C, so ratings at maximum ambient temperature of the application should be requested from the manufacturer. The inductor value can be calculated with:

$$L = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times \Delta I_L \times F_{OSC}}$$

Selecting the Input Capacitor

The input current to the step-down converter is discontinuous and therefore requires a capacitor to supply AC current to the step-down converter while maintaining the DC input voltage. For a better performance, use ceramic capacitors placed as close to VIN as possible and a 0.1µF input capacitor to filter out high frequency interference is recommended. Capacitors

Where ΔIL is the inductor ripple current. Choose inductor ripple current to be approximately 30% to 40% of the maximum load current. The maximum inductor peak current can be estimated as:

$$I_{L(MAX)} = I_{LOAD} + \frac{\Delta I_L}{2}$$

Under light load conditions below 100mA, larger inductance is recommended for improved efficiency. Larger inductances lead to smaller ripple currents and voltages, but they also have larger physical dimensions, lower saturation currents and higher linear impedance. Therefore, the choice of inductance should be compromised according to the specific application. with X5R and X7R ceramic dielectrics are recommended because they are stable with temperature fluctuations. The capacitors must also have a ripple current rating greater than the maximum input ripple current of the converter. The input ripple current can be estimated with

Equation:

TX941XA/F-20M6R

16V,2A synchronous Step-Down Converter

$$I_{CIN} = I_{OUT} \times \sqrt{\frac{V_{OUT}}{V_{IN}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)}$$

From the above equation, it can be concluded that the input ripple current reaches its maximum at VIN=2VOUT where $I_{CIN} = \frac{l_{OUT}}{2}$. For simplification, choose an input capacitor with an RMS current rating greater than half of the maximum load current.

The input capacitance value determines the input voltage ripple of the converter. If there is an input voltage ripple requirement in the system, choose the input capacitor that meets the specification. The input voltage ripple can be estimate with Equation:

$$\Delta V_{IN} = \frac{I_{OUT}}{F_{OSC} \times C_{IN}} \times \frac{V_{OUT}}{V_{IN}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

Similarly, when VIN=2VOUT, input voltage ripple reaches its maximum of $\frac{\Delta V_{IN}}{I} = \frac{1}{4} \times \frac{I_{OUT}}{F_{OSC} \times C_{IN}}$.

Selecting the Output Capacitor

An output capacitor is required to maintain the DC output voltage. The output voltage ripple can be estimated with Equation:

$$\Delta V_{OUT} = \frac{V_{OUT}}{F_{OSC} \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times \left(R_{ESR} + \frac{1}{8 \times F_{OSC} \times C_{OUT}}\right)$$

There are some differences between different types of capacitors. In the case of ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance. The output voltage ripple is mainly caused by the capacitance. For simplification, the output voltage ripple can be estimated with Equation:

$$\Delta V_{OUT} = \frac{V_{OUT}}{8 \times {F_{OSC}}^2 \times L \times C_{OUT}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

A larger output capacitor can achieve a better load transient response, but the maximum output capacitor limitation should also be considered in the design application. If the output capacitor value is too high, the output voltage will not be able to reach the design value during the soft-start time and will fail to regulate. The maximum output capacitor value (COUT_MAX) can be limited approximately with Equation:

$$C_{OUT\ MAX} = (I_{LIM\ AVG} - I_{OUT}) \times T_{SS}/V_{OUT}$$

Where LLIM_AVG is the average start-up current during the soft-start period, and TSS is the soft- start time.

On the other hand, special attention should be paid when selecting these components. The DC bias of these capacitors can result in a capacitance value that falls below the minimum value given in the recommended capacitor specifications table.

The ceramic capacitor's actual capacitance can vary with temperature. The capacitor type X7R, which operates over a temperature range of −55°C to +125°C, will only vary the capacitance to within ±15%. The capacitor type X5R has a similar tolerance over a reduced temperature range of −55°C to +85°C. Many large value ceramic capacitors, larger than 1uF are manufactured with Z5U or Y5V temperature characteristics. Their capacitance can drop by more than 50% as the temperature varies from 25°Cto 85°C. Therefore, X5R or X7R is recommended over Z5U and Y5V in applications where the ambient temperature will change significantly above or below 25°C.

Feed-Forward Capacitor (CFF)

TX941XA/F-20M6R has internal loop compensation, so adding CFF is optional. Specifically, for specific applications, if necessary, consider whether to add feed-forward capacitors according to the situation.

The use of a feed-forward capacitor (CFF) in the feedback network is to improve the transient response or

TX941XA/F-20M6R

16V,2A synchronous Step-Down Converter

higher phase margin. For optimizing the feed-forward capacitor, knowing the cross frequency is the first thing. The cross frequency (or the converter bandwidth) can be determined by using a network analyzer. When getting the cross frequency with no feed-forward capacitor identified, the value of feed-forward capacitor (CFF) can be calculated with the following Equation:

$$C_{FF} = \frac{1}{2\pi \times F_{CROSS}} \times \sqrt{\frac{1}{R1} \times \left(\frac{1}{R1} + \frac{1}{R2}\right)}$$

Where F_{CROSS} is the cross frequency.

To reduce transient ripple, the feed-forward capacitor value can be increased to push the cross frequency to higher region. Although this can improve transient response, it also decreases phase margin and cause more ringing. In the other hand, if more phase margin is desired, the feed-forward capacitor value can be decreased to push the cross frequency to lower region.

Top Layer

VOUT

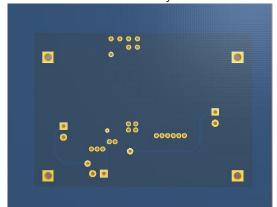
C5 C4 C2

C3 C4 C2

R3 C6

R3 C6

GND


GND

PC Board Layout Consideration

PCB layout is very important to achieve stable operation. It is highly recommended to duplicate EVB layout for optimum performance. If change is necessary, please follow these guidelines for reference.

- Keep the path of switching current short and minimize the loop area formed by Input capacitor, high-side MOSFET and low-side MOSFET.
- 2. Bypass ceramic capacitors are suggested to be put close to the VIN Pin.
- Ensure all feedback connections are short and direct.
 Place the feedback resistors and compensation components as close to the chip as possible.
- VOUT, SW away from sensitive analog areas such as FB.
- 5. Connect IN, SW, and especially GND respectively to a large copper area to cool the chip to improve thermal performance and long-term reliability.

Bottom Layer

16V,2A synchronous Step-Down Converter

Typical Application Circuits

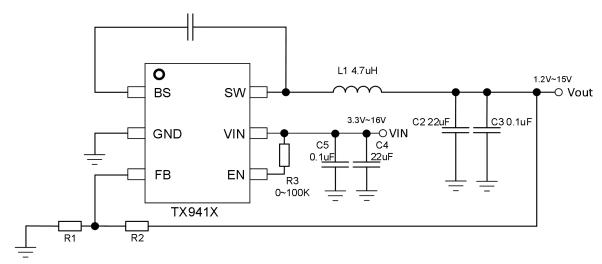


Figure 1. Typical Application Circuit for Output Voltage > 5V

Note(4): V_{EN} Pin Pull-up Configuration to V_{IN} (Resistor Range: 0-100k Ω).

When the V_{EN} pin is directly pulled up to V_{IN} via a resistor (0-100k Ω), the output voltage can be configured above 5V, with a maximum of 15V.Ensure the input voltage (V_{IN}) complies with the chip's rated operating conditions, and the output-stage power devices meet the voltage withstand requirements.

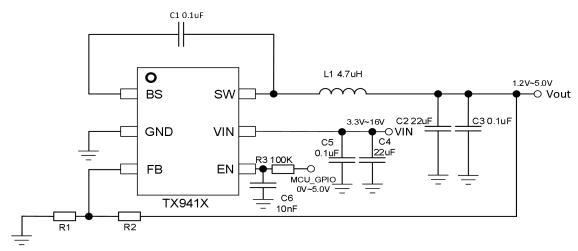
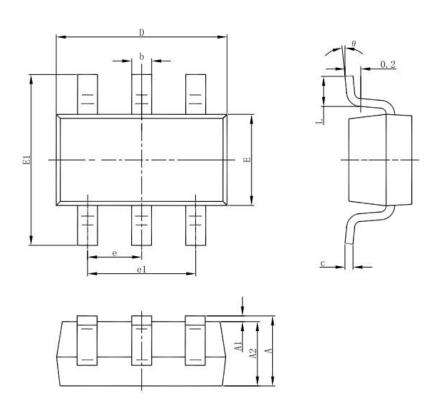


Figure 2.Typical Application Circuit for Output Voltage ≤5.0V


Note(5):V_{EN} Pin Control via GPIO Limitations.

When the V_{EN} pin is controlled by an external GPIO signal, the output voltage must be limited to \leq 5.0V.An external RC delay circuit (recommended values: R=100k Ω , C=10nF) is required to ensure the EN pin's power-up slew rate \geq 3.3V/ms, meeting the internal timing logic requirements. The GPIO drive level must be compatible with the V_{EN} pin logic thresholds to avoid malfunctions due to insufficient driving capability.

16V,2A synchronous Step-Down Converter

Package Description 6-pin SOT23-6 Outline Dimensions

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950		0.037(BS	SC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
е	0°	8°	0°	8°	

TX941XA/F-20M6R 16V,2A synchronous Step-Down Converter

© Shanghai TX Electronics Sci-Tech Co., Ltd

TX cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TX product. No circuit patent license, copyrights or other intellectual property rights are implied. TX reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.